ALLEGATO 3 - SORGENTI LUMINOSE

L'utilizzo di sorgenti luminose ad avanzata tecnologia ed elevata efficienza luminosa costituisce un ulteriore criterio tecnico imposto dalla normativa regionale, affinché gli impianti possano essere considerati a ridotto inquinamento luminoso e a risparmio energetico.

Tipologie e scelta della sorgente luminosa

La d.g.r. n. VII/6162 del 20 settembre 2001, all'articolo 5 *Criteri comuni*, lettera b) prevede l'utilizzo di lampade ad avanzata tecnologia ed elevata efficienza luminosa, quali al sodio a bassa pressione o al sodio ad alta pressione, in luogo di quelle con efficienza luminosa inferiore. Nei soli casi ove risulti indispensabile un'elevata resa cromatica, è consentito l'impiego di lampade a largo spettro, agli alogenuri metallici, a fluorescenza compatte e al sodio a luce bianca, purché funzionali in termini di massima efficienza e minor potenza installata.

La l.r. 17/00 e s.m.i. privilegia le lampade al sodio alta pressione e bassa potenza, in particolare quelle al sodio alta pressione da 50 e 70 W, in quanto meno inquinanti dell'intero spettro elettromagnetico.

Solo ove strettamente necessario, come negli ambiti pedonali, possono essere utilizzate anche sorgenti a maggiore resa cromatica (Ra>65), ma che , a parità di potenza, in termini di efficienza siano paragonabili a quelle al sodio ad alta pressione e quindi con efficienze superiori ad 89 lm/W. Nello specifico è consentito l'impiego di tali sorgenti nei centri storici, nelle aree commerciali, nell'illuminazione dei monumenti, degli edifici, delle aree di aggregazione e dei centri storici in zone di comprovato e/o riconosciuto valore culturale e/o sociale.

Questo principio si integra con quello altrettanto importante di contenimento delle potenze installate per ogni singolo impianto ed applicazione:

- in senso puntuale, in quanto, a parità di applicazione e di punti luce, è preferibile l'utilizzo di lampade a minore potenza (anche se meno efficienti). Per esempio, gli ambiti pedonali interni ad un parco possono essere illuminati con sorgenti a fluorescenza da 23 W o tipo a ioduri bruciato e ceramico da 20 o 35 W, piuttosto che con lampade da 70 W al sodio alta pressione. E' evidente che questa valutazione deve essere effettuata a parità di punti luce, perché diversamente si opera secondo una modalità incompatibile con la filosofia ed i contenuti della l.r. 17/00 e s.m.i.;
- in senso generale, in quanto le scelte progettuali devono orientarsi alla riduzione delle potenze installate ed all'ottimizzazione degli impianti anche dal punto di vista manutentivo. Per esempio, dove possono essere utilizzati sistemi a LED, di segnalazione o di evidenziazione, anche se l'efficienza è inferiore rispetto ad una lampada al sodio alta pressione, in quanto le potenze installate ed i costi manutentivi vengono abbattuti in modo consistente, soprattutto in virtù della maggiore durata dei led, fino a 7 volte superiore rispetto a quella di lampade tradizionali. L'utilizzo di sorgenti e degli apparecchi

- a LED non deroga comunque dalla prescrizione della I.r. 17/00 e s.m.i. di emissione massima di 0.49 cd/klm a 90° ed oltre;
- l'incremento di potenza significa, per ogni tipologia di sorgente luminosa, incremento di efficienza,
 ponendosi quindi non in linea con le indicazioni della I.r. 17/00 e s.m.i.
 - Le sorgenti luminose che, in corrispondenza dei diversi ambiti, devono essere privilegiate sono:
 - a) Stradale: Sodio alta pressione con potenze in relazione alla classificazione illuminotecnica della strada;
 - b) Pedonale: Sodio alta pressione e, in specifici e limitati ambiti, ioduri metallici a bruciatore ceramico con efficienza >89 lm/W;
 - c) Impianti sportivi: ioduri metallici tradizionali;
 - d) Parchi, ciclabili e residenziale: Fluorescenza, sodio alta pressione e, in specifici e limitati ambiti, ioduri metallici a bruciatore ceramico con efficienza >89 lm/W;
 - e) Monumenti ed edifici di valore storico, artistico ed architettonico: sodio alta pressione nelle sue tipologie o ioduri metallici a bruciatore ceramico con efficienza >89 lm/W in relazione alle tipologie e ai colori delle superfici da illuminare.

Le sorgenti richiamate hanno le seguenti caratteristiche generali minime:

- 1- Lampade ai vapori di sodio ad alta pressione
- Potenze comprese fra 50 e 400 W (sono da privilegiare le potenze inferiori in relazione al tipo di applicazione);
- una durata superiore a 12.000 ore;
- un flusso luminoso compreso fra 4.400 lm (50 W) e 48.000°lm (400 W);
- un'efficienza compresa fra 88 lm/W (50 W) e 120 lm/W (400 W).
- una Resa cromatica (Ra) compreso fra 25 e 65;
- sono ideali nell'illuminazione di aree e strade urbane ed extraurbane, pubbliche e private.
- 2-Lampade fluorescenti compatte a risparmio energetico:
- una durata superiore a 15.000 ore;
- una temperatura colore T = 3000°K;
- una Resa Cromatica (Ra) che raggiunge anche il valore 82;
- potenze massime pari a 36 W;
- possono essere utilizzate in impianti di modesta entità, come giardini, vialetti, residenze private. Il loro utilizzo, considerata l'accensione immediata, è ideale anche per l'illuminazione di ciclabili o passaggi pedonali regolati da sensori di movimento.
- 3-Lampade ad alogenuri metallici (Tipologia: Bruciatore ceramico) Tipo 1:
- una durata superiore a 7.000 ore;
- potenze comprese fra 20, 35 e 150 W (sono da privilegiare le potenze inferiori in relazione al tipo di applicazione);

- un flusso luminoso compreso fra 3.400 lm (35 W) e 14.000°lm (150 W);
- un'efficienza compreso da 89 a 94 lm/W;
- possono essere utilizzate nell'illuminazione di aree limitate per cui è richiesta un'elevata resa cromatica (alcuni elementi del centro storico, come monumenti, piazze o passeggiate pedonali); il loro impiego è spesso indicato per l'illuminazione decorativa dei manufatti e, data la loro durata limitata, la difficoltà di regolazione e l'alto potere di inquinamento dello spettro elettromagnetico, è consigliato limitarne l'uso ove strettamente necessario.
- 4-Lampade ad alogenuri metallici Tipo 2:
- una durata superiore a 7.000 ore;
- potenze comprese tra 250 a 1000 W;
- possono essere utilizzate nell'illuminazione di aree per cui è obbligatoria un'elevata resa cromatica, come nel caso di impianti sportivi. Considerate la bassa efficienza, la durata limitata, l'impossibilità di regolazione del flusso luminoso, l'elevato potere inquinante dello spettro elettromagnetico e le alte potenze impiegate, è consigliato limitarne l'uso ove strettamente necessario.

Sostituzione/Eliminazione delle sorgenti luminose ai vapori di mercurio

L'obiettivo è la sostituzione delle sorgenti ai vapori di mercurio, che sono altamente inefficienti ed inquinanti, con sorgenti luminose ad elevata efficienza e minore potenza installata.

In Tabella 1 sono indicati i benefici della sostituzione, considerando solo il confronto fra sorgenti luminose.

VECCHIA	NUOVA	INCREMENTO DEL FLUSSO	RISPARMIO
LAMPADA	LAMPADA	LUMINOSO	INDICATIVO [W]
80 W Mercurio	50 W Sodio AP	- 6% (da 3600 a 3400 lumen)	37,5% (> se aumenta l'interdistanza)
80 W Mercurio	70 W Sodio AP	+ 80% (da 3600 a 6500 lumen)	12,5% (> se aumenta l'interdistanza)
125 W Mercurio	70 W Sodio AP	+ 5% (da 6200 a 6500 lumen)	44%
125 W Mercurio	100 W Sodio AP	+ 61% (da 6200 a 10000 lumen)	20% (> se aumenta l'interdistanza)
250 W Mercurio	150 W Sodio AP	+19% (da 12500 a 14700 lumen)	40% (> se aumenta l'interdistanza)

Tabella 1 – Interventi di sostituzione di lampade ai vapori di mercurio con lampade al sodio alta pressione

Nella quasi totalità dei casi è possibile ridurre la potenza passando a sorgenti con efficienze superiori installate in apparecchi ad elevate performance. Le più comuni sostituzioni consigliate sono quelle riportate nella Tabella 2.

VECCHIA LAMPADA		NUOVA LAMPADA
80 W Mercurio	SOSTITUITA	50 W Sodio AP
125 W Mercurio	CON	70 W Sodio AP
250 W Mercurio		150 W Sodio AP

Tabella 2 – Confronto tra i valori di potenza di sorgenti tradizionali e sorgenti ad alta efficienza.

La sostituzione delle sorgenti ai vapori di mercurio richiede quasi sempre anche la sostituzione degli apparecchi privilegiando nuova tecnologia e maggiori performance.

La sostituzione più classica (da 125 W Hg a 70 W Sodio AP) riduce del 70% il costo energetico, con un incremento del flusso luminoso emesso pari al 5%, ma il nuovo apparecchio illuminante incrementa il flusso sulla strada anche sino al 20-25%.

Non operare in tal senso comporta i seguenti aspetti negativi:

- non vi è compatibilità con i contenuti di ottimizzazione della l.r. 17/00 e s.m.i.;
- è una perdita di opportunità in termini di risparmio energetico;
- è un pericolo, in quanto la sostituzione, a pari potenze, di sorgenti e apparecchi obsoleti con analoghi ad alta efficienza incrementa l'illuminazione in modo diffuso e fortemente impattante sull'intero territorio.

VECCHIA LAMPADA		NUOVA LAMPADA	INCREMENTO DEL FLUSSO LUMINOSO	INCREMENTO FLUSSO A TERRA STIMATO
80 W Mercurio	_ 、	70 W Sodio AP	+ 80%	100-110% (+ che raddoppia)
125 W Mercurio	=>	100 W Sodio AP	+ 61%	90-100% (raddoppia)
125 W Mercurio		150 W Sodio AP	+ 240%	300% (triplica)
250 W Mercurio		250 W Sodio AP	+ 225%	280-300% (triplica)

Tabella 3 – Incremento del flusso luminoso complessivo stimato.

Il risultato indicato nella Tabella 3 è il grande squilibrio esistente tra la situazione precedente e quella successiva alla sostituzione, in quanto si innesca una forte differenza tra i livelli d'illuminazione e di percezione del territorio, che porta l'intero territorio, per confronto, ad apparire completamente buio e quindi potenzialmente connotato da pericolosità ed insicurezza, imponendo quindi un incremento a catena dei livelli di illuminazione e di corrispondenti sprechi energetici.