
ALLEGATO B

COME ILLUMINARE CORRETTAMENTE

Il Controllo del flusso luminoso diretto costituisce di fatto lo strumento imposto dalla normativa regionale per definire il "come illuminare" correttamente, in modo che gli impianti di illuminazione possano essere considerati a ridotto inquinamento luminoso e a risparmio energetico.

legge provinciale n.16/07, Art. 4, comma 3, lettera b):

b) le fonti luminose di cui al comma 1, lettera a), presentano un'intensità luminosa non superiore a 0,49 candele per 1.000 lumen per angoli gamma maggiori o uguali a 90 gradi.

- L' **Intensità luminosa** (I) esprime la quantità di luce che è emessa da una sorgente (flusso luminoso) in una determinata direzione (angolo γ). Essendo una grandezza di tipo *vettoriale* per esprimerla correttamente non basta indicare la quantità di luce ma occorre specificare la direzione ad essa associata. Per permettere i necessari confronti viene "normalizzata" per 1000 lumen. L'unità di misura è la candela (cd).
- Il **Flusso luminoso** (Φ) è la grandezza che quantifica la quantità di luce emessa da una sorgente luminosa o, come in questo caso, da un apparecchio, nell'unità di tempo. L'unità di misura è il lumen (lm).

Prevedere che i nuovi impianti debbano possedere apparecchi che, una volta installati, emettano al massimo tra 0,00 e 0,49 cd di intensità luminosa ogni 1000 lumen emessi (l'indicazione di tali valori, rientra nel range dell'errore strumentale della misurazione del valore zero), per un angolazione pari o maggiore a 90° (cioè oltre la linea di orizzonte) significa non ammettere

flusso luminoso al di sopra della linea di orizzonte, e a tal fine è da sottolineare l'importanza di una corretta installazione.

L' **angolo** γ e quello misurato rispetto alla direzione verticale passante per il centro dell'apparecchio. Gamma uguale a 0° si trova al nadir (sotto l'apparecchio), gamma uguale a 90° corrisponde alla direzione dell'orizzonte (orizzontale) e gamma uguale a 180° corrisponde alla direzione dello zenit (perfettamente sopra l'apparecchio). Si veda la figura 4.

L' **angolo** C è l'angolo che i piani passanti per il centro dell'apparecchio e verticali formano con la direzione longitudinale alla strada. Si veda la figura 3 e 4.

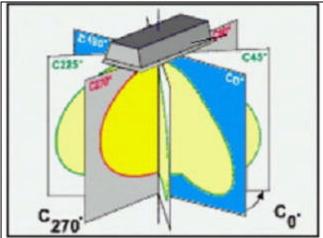


Fig. 3 – Intensità luminosa tracciata in ciascun piano che taglia il corpo illuminante. La somma di tutte le intensità luminose a 360° su tutti i piani rappresenta il "solido" fotometrico dell'apparecchio.

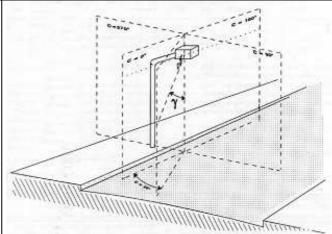


Fig. 4 — Schematizzazione di come viene rappresentata l'intensità luminosa. Esiste una intensità luminosa per ogni angolo Gamma su ogni piano C.

Sono certamente conformi alla legge provinciale n.16/07, i corpi illuminanti installati ORIZZONTALI e con vetro di protezione PIANO, o chiusura PIANA; tali apparecchi inoltre presentano i seguenti importanti vantaggi:

- Non inquinano e non abbagliano;
- Si sporcano meno, e sono più facilmente pulibili;
- Hanno una minore perdita di efficienza;
- Non ingialliscono;
- Sono più resistenti anche ad eventi accidentali;
- Costano meno;
- Non sono elementi mobili nell'armatura a rischio di cadute.

La verifica della conformità dei corpi illuminanti alle leggi regionali passa attraverso la verifica del valore dell'intensità luminosa per angoli gamma di 90° ed oltre. Per tale verifica è INDISPENSABILE ricevere dal produttore, ai sensi e nei modi indicati all'art. 4, comma 3 lettera b) della legge provinciale n.16/07, la tabella fotometrica dell'apparecchio illuminante (che rappresenta l'intensità luminosa per ogni angolo C e Gamma). Qualsiasi autodichiarazione del produttore non ha alcun valore, in quanto gli unici elementi per verificare la rispondenza di legge sono esclusivamente le misurazioni fotometriche dell'apparecchio, certificate preferibilmente da un ente terzo quale ad esempio l'IMQ e comunque firmate dal responsabile tecnico del laboratorio di misura che le ha emesse.

Di seguito è riportata la Figura 4 che riporta la tabella delle intensità luminose (cd/klm) emesse in ogni direzione C, Gamma di un corpo illuminante, tratto dai certificati "performance" di IMQ.

	C 2	70	285	300	310	315	320	325	330	335	340	345	350	355	360	5	10	15	20	25	30	35	40	45	50	60	75	90
7																				-		5-8						
0	1	94	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194	194
10	1	86	186	187	188	190	190	190	190	191	190	191	192	192	193	193	193	195	195	195	194	194	194	193	193	193	193	188
20	1	77	177	179	182	184	187	188	191	191	192	194	197	198	200	200	199	202	203	203	194	195	194	192	190	185	184	182
30	1	60	163	168	173	176	181	185	186	190	194	200	204	206	214	214	212	214	211	207	206	196	192	180	184	173	169	173
35	1	50	154	160	167	171	176	180	183	187	195	201	209	212	215	215	215	215	211	207	200	196	186	180	178	165	160	167
40	1	30	144	152	158	164	170	176	180	178	193	194	204	207	210	210	223	227	227	210	196	185	177	173	169	155	150	158
45	1	25	134	146	155	157	160	165	171	178	186	193	200	210	225	225	230	236	236	219	201	186	174	168	162	150	142	155
50	1	06	114	127	136	142	140	157	166	176	188	198	210	221	235	235	256	284	284	284	211	182	162	152	147	133	126	136
55	S	90	99	113	121	126	135	143	155	166	180	197	215	235	245	245	303	334	334	285	223	173	150	142	136	121	114	121
60	7	6	84	96	106	110	117	120	126	140	155	175	207	250	263	263	340	364	364	284	225	161	138	128	122	104	95	106
65	10	52	68	80	90	94	99	104	110	121	138	156	190	218	257	257	359	393	393	263	222	159	127	114	100	91	77	90
70	3	36	47	67	74	78	82	85	91	104	126	150	177	204	241	241	324	343	333	200	215	134	101	87	84.	76	65	74
75		5	8	19	29	35	43	47	65	66	97	120	151	160	168	168	279	275	185	51	144	59	33	41	34	22	27	29
80	7	0	1	3	4	4	5	8	6	7	7	8	11	12	13	20	85	13	6	4	27	9	3	7	2	1	2	4
85		0	0	0	0	0	0	0	0	0	0	1	1	1	1	2	4	2	1	1	2	1	0	0	0	0	0	0
90	3	0	0	0	0	0	0	.0	0.	0	9	.0	0	0	0.	0	10.	8	0.0	8	0	0	0	8	0	0.	-0	0
95	j, G	0	0	0	8.	0	0	-8	0.	0	0	.0	0	0	0	.0	0	0	0	8	0	8.	0	0	0	0	0	0
100		Û	0	0	0	Û	0.	0	0.	0	0	0	0	0	Û	0	0	Û	0	Û	0	0	0	0	0	0.0	0	0
110	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ū,	0	Ū	0	0	0	0	0	0	0	.0	0
120	9	0	0	0	0	0	1	0	0.	0	0	0	0	0	0	n.	n.	0	10	0	0	0	0	0	0	0.	0	-0
130-1	80	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	. 0	0	0	0

Fig.4: tabella di dati fotometrici tratta da "performance" dell'IMQ.

Come si può facilmente verificare, la tabella riporta un esempio di dati fotometrici di un apparecchio conforme alla normativa regionale, avendo Intensità luminosa per un angolo di 90° ed oltre, di zero candele (riga con gamma 130-180°).

Per essere conforme alle direttive di legge, le tabelle fotometriche devono contenere valori di intensità luminosa massima che non superi 0cd/klm o 0.49 cd/klm per angoli gamma superiori o uguali a 90° (tutte le linee evidenziate in rosso nella figura 4) per ogni piano C.

Se nella tabella vengono riportati dal laboratorio emittente anche i numeri decimali il valore massimo ammissibile è 0.49cd/klm.

Accortezze:

- Occorre sempre accertarsi che la tabella non venga tagliata per gli angoli oltre i 90° altrimenti non ha alcun valore.
- La tabella deve essere accompagnata dai dati che indicano la posizione di misura dell'apparecchio ed il tipo di lampada utilizzata.

E' fondamentale che il progettista si faccia rilasciare dal fornitore la tabella di figura 4 in formato numerico cartaceo o files (per esempio pdf) e i dati fotometrici in formato Eulumdat necessari per realizzare il progetto illuminotecnico con i software disponibili in commercio.

Corretta installazione

Ulteriore aspetto di rilievo riguarda la corretta installazione degli apparecchi illuminanti: anche un apparecchio privo di emissione luminosa al di sopra di angoli di 90° (quindi un apparecchio di per sé conforme) se installato in posizione inclinata rispetto alla posizione di misura di laboratorio, può registrare intensità luminosa verso l'alto.

Per effettuare tale verifica occorre "ruotare" la curva fotometrica, sull'asse del diagramma, per l'angolo di inclinazione in cui l'apparecchio è montato, come mostrato nell'esempio delle Tabelle 1, 2 e 3. La Tabella 1 riporta i dati fotometrici di un apparecchio che risulta conforme alla normativa regionale in quanto per una angolazione di 90° ed oltre l'emissione è pari a zero.

Supponiamo che però tale apparecchio sia stato montato inclinato di 10° , i valori traslano tutti di 10° e l'apparecchio risulta a 90° emettere 12 cd (Tabella 2) . Questo significa che tale apparecchio, montato inclinato di 10° NON è più a norma. Stessa cosa (anzi peggio) se lo si montasse inclinato di 30° , l'emissione a 90° ed oltre diventerebbe elevata e cioè pari a 574 cd in quanto è come se la tabella scorresse di 30° da 90° a 120° (Tabella 3).

Tabella 1:inclinato 0°

Tabella 2:inclinato di 10°

Tabella 3: inclinato di 30°

Angolo	Cd/1000 lm	Angolo	Cd/1000 lm	Angolo	Cd/1000 lm
<i>0</i> °	335	<i>0</i> °	368	<i>0</i> °	412
10°	368	10°	335	10°	391
20°	391	20°	368	20°	368
30°	412	30°	391	30°	335
40°	435	40°	412	40°	368
50°	487	50°	435	50°	391
60°	574	60°	487	60°	412
70°	125	70°	574	70°	435
80°	12	80°	125	80°	487
90°	0	90°	12	90°	574
100°	0	▶ 100°	0	100°	125
110°	0	110°	θ	110°	12
120°	0	120°	0	120°	0
130°	0	130°	0	130°	0
140°	0	140°	0	140°	0
150°	0	150°	0	150°	0
160°	0	160°	0	160°	0
170°	0	170°	0	170°	0
180°	0	180°	0	180°	0

Proprio per lo stesso motivo è fondamentale ricevere dati fotometrici comprensivi dell'informazione della posizione di installazione infatti per evitare che

La lettura delle tabelle fotometriche è trattata nell'Allegato G.